제품이 장바구니에 추가됨

Mid-Wave Infrared (MWIR) and Long-Wave Infrared (LWIR) Waveplates

×
  • 3 – 9μm 범위의 용도에 적합함
  • λ/4 및 λ/2 Retardance
  • Alignment 및 시스템 결합이 용이한 마운트

공통 스펙

Clear Aperture CA (mm):
10.0
Diameter (mm):
25.40
Parallelism (arcmin):
3
Construction:
Crystalline
Mount Thickness (mm):
6.0
Substrate:
MgF2
Transmitted Wavefront, P-V:
<λ/8 @ 632.8nm
Retardance Tolerance:
λ/100 @ 20°C
Retardance Order:
0
 Retardance  DWL (nm) CA (mm) Dia. (mm)  Type   Transmitted Wavefront, P-V   제품 비교하기   재고 번호   가격(부가세 별도)  구입하기
λ/4 3000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-110 KRW 1,392,000 수량 10+ KRW 1,249,900   견적 요청  
  • 품절/문의요망
    ×
 
λ/4 4000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-111 KRW 1,392,000 수량 10+ KRW 1,249,900   견적 요청  
  • 품절/문의요망
    ×
 
λ/4 5000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-112 KRW 1,392,000 수량 10+ KRW 1,249,900   견적 요청  
  • 3~5일내 배송
    ×
 
λ/4 6000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-113 KRW 1,442,800 수량 10+ KRW 1,299,200   견적 요청  
  • 3~5일내 배송
    ×
 
λ/4 7000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-114 KRW 1,442,800 수량 10+ KRW 1,299,200   견적 요청  
  • 품절/문의요망
    ×
 
λ/2 3000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-117 KRW 1,392,000 수량 10+ KRW 1,249,900   견적 요청  
  • 3~5일내 배송
    ×
 
λ/2 4000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-118 KRW 1,392,000 수량 10+ KRW 1,249,900   견적 요청  
  • 품절/문의요망
    ×
 
λ/2 5000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-119 KRW 1,392,000 수량 10+ KRW 1,249,900   견적 요청  
  • 3~5일내 배송
    ×
 
λ/2 6000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-120 KRW 1,442,800 수량 10+ KRW 1,299,200   견적 요청  
  • 품절/문의요망
    ×
 
λ/2 7000 10.0 25.40 Crystalline Waveplate <λ/8 @ 632.8nm #85-121 KRW 1,442,800 수량 10+ KRW 1,299,200   견적 요청  
  • 3~5일내 배송
    ×
 

당사의 zero order Mid-Wave Infrared (MWIR) 및 Long-Wave Infrared (LWIR) Waveplate는 3 – 9μm 파장 범위에서의 용도에 맞게 설계되었습니다. multiple order waveplate에 비해 zero order waveplate는 더 넓은 대역폭을 제공하고 온도 변화에 덜 민감합니다. 이 waveplate는 일련의 파장에서 λ/4또는 λ/2 retardance를 갖고 있고 광범위한 스펙트럼에 걸쳐 효율적인 retardation을 제공해 다양한 IR 용도에 적합합니다. 각각의 MWIR 및 LWIR waveplate는 AR 코팅 처리가 되어 있고 시스템 결합이 쉽게 장착되어 있습니다.

Contrast measurement of waveplates placed between two Glan polarizers. λ/4 waveplate shows 50% transmission value at 5μm as it converts linear polarization to circular.
Contrast measurement of waveplates placed between two Glan polarizers. λ/4 waveplate shows 50% transmission value at 5μm as it converts linear polarization to circular.
Filter

Introduction to Polarization

Is polarization a new topic for you? Learn about key terminology, types, and more information to help you understand polarization at Edmund Optics.

바로 보기

Advantages of using engineered chalcogenide glass for color corrected, passively athermalized LWIR imaging systems

Infrared Light

Optical Engineer Andrew Fisher explains how you can see the "invisible" light, or infrared light, from your own TV remote.

바로 보기

Short Wave Infrared (SWIR, 근적외선)

Laser-Cut Polymer Polarizer and Retarder Quote Tool

적외선 용도에서 메니스커스 렌즈 사용시의 이점

Meniscus lenses offer superior performance compared to plano convex lenses in IR applications. Find out the benefits of using a meniscus lens at Edmund Optics.

바로 보기

적외선(IR) 어플리케이션을 위한 올바른 소재

Using an Infrared Application? Discover the importance of choosing the right material and comparisons of each at Edmund Optics.

바로 보기

Polymer Polarizers and Retarders

Polymer polarizers and retarders, consisting of sheets of polyvinyl alcohol and TAC cellulose triacetate, alter the polarization of light.

바로 보기

Polarizer Selection Guide

Edmund Optics' Polarizer Selection Guide refines your search for a specific type of polarizer.

바로 보기

Waveplate 이해하기

Waveplates (retarders) are different when used in polarized light than unpolarized light. Consider terminology, fabrication, or applications at Edmund Optics.

바로 보기

How Do 3D Movies Work? Polarization

Optical Engineer Katie Schwertz explains how 3D movies work because of polarization in a kid-friendly way.

바로 보기

Polarization Overview - Part 1: Polarization Basics

Polarizers are optical components designed to filter, modify, or analyze the various polarization states of light.

바로 보기

Polarization Overview - Part 2: Waveplates & Retarders (Advanced)

Waveplates and retarders are optical components designed to transmit light while modifying its polarization state without attenuating, deviating, or displacing the beam.

바로 보기

Is it okay to clean an infrared lens, for example one made of germanium, with ethanol?

Infrared (IR) Spectrum

You offer many types of polarizers. What are some key benefits to help me decide which is best for my application?

Are the polarizers shipped with a protective film?

What is the difference between s- and p-polarization states?

What are the meanings for the different terms used for polarizers?

How can I tell what the polarization axis is for a linear polarizer?

When you list the average transmission of a polarizer, what is the difference between single, parallel, and crossed?

I have a linear polarizer glass filter and would like to create circularly polarized light. What type of optics do I need for this?

What is the maximum amount of light a polarizer can transmit?

Does the circular polarizer material have to face a particular direction?

What is the fast and slow axis of a retarder and how do they differ?

How can I find the fast and slow axes of a retarder?

What is the difference between multiple and zero-order retarders and when should I pick one over the other?

How can I determine if a retarder is quarter or half wave?

Can I adapt a retarder for use with a specific wavelength other than the design wavelength?

What is the benefit of polymer retarders?

Analyzer

Birefringence(복굴절)

Circular Polarizer

Polarization

Polarizer

Polarizing Efficiency

P-Polarization

Retardance

Retarder (Waveplate)

S-Polarization

Unpolarized

Wire Grid Polarizer

UV vs. IR Grade Fused Silica

UV grade fused silica is ideal for UV and visible applications, but IR grade fused silica has better transmission in the IR due to a lack of OH- impurities.

바로 보기

SWIR 이란?

Have a question about short-wave infrared (SWIR)? Find definitions, application uses, and examples at Edmund Optics.

바로 보기

Hyperspectral and Multispectral Imaging

Are you trying to gauge depth of field in your imaging system? Take a closer look at this article on depth of field calculations at Edmund Optics.

바로 보기

초분광 & 다중분광 이미징 – 트렌드 in 광학: 에피소드 7

Hyperspectral and multispectral imaging are imaging technologies that capture information from a broader portion of the electromagnetic spectrum.

바로 보기

You offer many substrates for UV and IR applications. How do I know which is best for me?

Successful Light Polarization Techniques

Are you looking for a solution to common imaging problems? Discover different polarization techniques to improve your image at Edmund Optics.

바로 보기

Polarization Directed Flat Lenses Product Review

Polarization Directed Flat Lenses, which are formed with polymerized liquid crystal thin-film, create a focal length that is dependent on polarization state.

바로 보기

Optical Polarizers 리뷰

Polarizers are used in a wide range of imaging and research and development applications.

바로 보기

Does the polarization of light change after reflecting off a mirror?

Do diffusers affect the polarization of light?

Does the polarization of light change when it passes through a beamsplitter?

I would like to split light from a circularly polarized laser source into two beams. What happens when it passes through a cube beamsplitter – both non-polarizing and polarizing?

Does light entering a multimode fiber undergo a polarization change during propagation through the fiber? If so, can the emerging light be linearly polarized by placing a polarizer at the fiber’s output end?

Why does the polarization of a laser matter?

The polarization state of a laser source is important for many different applications.

바로 보기

Extinction Ratio(소광비)

Non-Polarizing Beamsplitter

Polarizing Beamsplitter

Optical Microscopy Application: Differential Interference Contrast

Differential interference contrast (DIC) is one of the polarization techniques that can be used in optical microscopy. Learn about this technique at Edmund Optics.

바로 보기

Laser Polarization: The Importance of Polarization in Laser Applications

Understanding the polarization of laser light is critical for many applications, as polarization impacts reflectance, focusing the beam, and other key behaviors.

바로 보기
 
영업 & 기술 지원
 
본사 및 지사별 연락처 확인하기
빠른
견적 요청 도구
재고 번호 입력 필요
This site is protected by VikingCloud's Trusted Commerce program