제품이 장바구니에 추가됨
TECHSPEC® components are designed, specified, or manufactured by Edmund Optics. TECHSPEC® 부품은 에드몬드 옵틱스가 설계, 사양 지정 및 제조하는 제품입니다. 더 알아보기

12.0mm Dia. x -50 FL, Uncoated , UV Plano-Concave Lens

UV Fused Silica Plano-Concave (PCV) Lenses

UV Fused Silica Plano-Concave (PCV) Lenses Any of our lenses with a diameter of 5mm or greater can be specified with blackened edges. To specify the blackening, simply append a –INK to the BBAR coated stock number.
×
재고 #48-049 3~5일내 배송
×
기타 코팅 옵션
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
KRW 175,500
수량 1-5
KRW 175,500
수량 6+
KRW 140,300
가격(부가세 별도)
견적 요청
제품 정보 다운로드
Diameter (mm):
12.00 +0.0/-0.025
Effective Focal Length EFL (mm):
-50.00
Substrate: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
Fused Silica (Corning 7980)
f/#:
4.17
Numerical Aperture NA:
0.12
Coating:
Uncoated
Type:
Plano-Concave Lens
Wavelength Range (nm):
200 - 2200
Back Focal Length BFL (mm):
-51.37
Center Thickness CT (mm):
2.00
Center Thickness Tolerance (mm):
±0.05
Centering (arcmin):
<1
Clear Aperture CA (mm):
11
Edge Thickness ET (mm):
2.72
Focal Length Specification Wavelength (nm):
587.6
Focal Length Tolerance (%):
±1
Note:
Max. Flat Annulus is 0.3mm
Radius R1 (mm):
-22.92
Surface Quality:
40-20
Power (P-V) @ 632.8nm:
1.5λ
Irregularity (P-V) @ 632.8nm:
λ/4

Regulatory Compliance

RoHS 2015:
Reach 224:
Certificate of Conformance:

제품군의 상세 설명

  • 빔 확장 또는 광 투사 용도에 적합한 음의 초점 거리
  • 널리 사용되는 UV-AR 코팅 옵션 적용 가능
  • 대중적인 UV-AR 코팅 옵션 이용 가능

이와 같은 고성능 UV 광학 부품은 최첨단 CNC 장비를 이용하여 제작되며, 표면 정밀도와 성능 보증을 위해 Zygo의 GPI- XP 간섭계가 사용됩니다. UV 등급 렌즈는 연구용 합성 용융 실리카로 정밀 제조 과정을 거칩니다. 합성 용융 실리카 렌즈는 투과성이 뛰어나고 작동 온도가 높을 뿐만 아니라 개재물(inclusion) 함량이 매우 적고 화학적 순도가 우수합니다. 이 렌즈는 다양한 레이저 및 이미징 용도에 안성맞춤이며, 특히 UV 파장을 이용하는 용도에서 더욱 탁월한 성능을 발휘합니다. UV 파장에서 처리량을 최적화화기 위해 광대역 AR 코팅을 이용할 수 있습니다.

UV FS Transmission Curve
UV FS Transmission Curve

기술 정보

FUSED SILICA

Typical transmission of a 3mm thick, uncoated fused silica window across the UV - NIR spectra.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with MgF2 (400-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 1.75% @ 400 - 700nm (N-BK7)

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with UV-AR (250-425nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 1.0% @ 250 - 425nm
Ravg ≤ 0.75% @ 250 - 425nm
Ravg ≤ 0.5% @ 370 - 420nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with UV-VIS (250-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 1.0% @ 350 - 450nm
Ravg ≤ 1.5% @ 250 - 700nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with VIS-EXT (350-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.5% @ 350 - 700nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with VIS-NIR (400-1000nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 0.25% @ 880nm
Ravg ≤ 1.25% @ 400 - 870nm
Ravg ≤ 1.25% @ 890 - 1000nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with VIS 0° (425-675nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.4% @ 425 - 675nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with YAG-BBAR (500-1100nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 0.25% @ 532nm
Rabs ≤ 0.25% @ 1064nm
Ravg ≤ 1.0% @ 500 - 1100nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with NIR I (600 - 1050nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.5% @ 600 - 1050nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick fused silica window with NIR II (750 - 1550nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 1.5% @ 750 - 800nm
Rabs ≤ 1.0% @ 800 - 1550nm
Ravg ≤ 0.7% @ 750 - 1550nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Filter

무반사(AR) 코팅

Anti-reflection (AR) coatings are applied to optical components to increase throughput and reduce hazards caused by back-reflections.

바로 보기

광학 코팅 개론

Optical coatings are used to influence the transmission, reflection, or polarization properties of an optical component.

바로 보기

렌즈의 기하학적 형태별 성능 비교

This comparison of the performance of aspheric, achromatic, and spherical PCX lenses in different situations reveals the ideal use cases for each type of lens.

바로 보기

광학 부품 규격 이해하기

Do you want to know more about the importance of optical specifications? Learn the different types of specifications and their impact on your system at Edmund Optics.

바로 보기

UV vs. IR Grade Fused Silica

UV grade fused silica is ideal for UV and visible applications, but IR grade fused silica has better transmission in the IR due to a lack of OH- impurities.

바로 보기

SAG Calculator

Future of Spherical Lenses

Traditional spherical lenses are evolving due to the increasing demands of applications. Learn about the future of spherical lenses at Edmund Optics.

바로 보기

Edge-Blackening

Have a question about Edge-Blackening? Find more information on stray light, measuring BRDF, and more at Edmund Optics.

바로 보기

Geometrical Optics 101: Paraxial Ray Tracing Calculations

Do you use ray tracing on a regular basis? Learn more about the calculations aspect, along with steps and software at Edmund Optics.

바로 보기

광학 제품 사용 사례

Looking for application examples? Find examples for Detector Systems, Selecting the Right Lens, and Building a Projection System at Edmund Optics.

바로 보기

광학 렌즈 기하학 이해하기

Optical lens geometries control light in different ways. Learn about Snell's Law of Refraction, lens terminology and geometries at Edmund Optics.

바로 보기

구면 렌즈의 정밀 허용오차

Optical lenses require very precise tolerances. Learn more about tolerances for spherical lenses at Edmund Optics.

바로 보기

Keys to Cost Effective Optical Design and Tolerancing

Are you looking for ways to make cost effective optical designs? Find more information on selecting specifications and using tolerancing schemes at Edmund Optics.

바로 보기

How do I clean my lenses?

Is it possible to find Plano-Concave (PCV) or Double Concave (DCV) lenses where the diameter is greater than the focal length?

How does reversing the orientation of a PCX lens affect the EFL and BFL in a setup?

Plano-Concave (PCV) Lens

Plano-Convex (PCX) Lens

Double-Concave (DCV) Lens

Double-Convex (DCX) Lens

Meniscus Lens

적외선 용도에서 메니스커스 렌즈 사용시의 이점

Meniscus lenses offer superior performance compared to plano convex lenses in IR applications. Find out the benefits of using a meniscus lens at Edmund Optics.

바로 보기

기성 광학을 활용한 Beam Expander 제작 방법

Are standard beam expanders not meeting your application requirements? Learn how to design your own beam expander using stock optics at Edmund Optics.

바로 보기

Modifying Stock Optics Tip #3: Turn A Sphere Into An Asphere

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

바로 보기

Rapid Optical Prototyping

Quickly Respond to Collapsing Product Lifecycles

바로 보기

I am looking to prototype an illumination system. My objective is to use a small halogen filament bulb and end up with a beam of light. What would be the best lens or lens combination to give me this projected spot of light?

What is the difference between the effective focal length and the back focal length?

What are the benefits of aspheric lenses compared to standard singlet lenses?

Sag

Back Focal Length (BFL)

Field Curvature(상면 만곡)

Optical Glass

Choosing the right optical glass is important. Find out factors and properties on how to select the right optical glass at Edmund Optics.

바로 보기

Machine Vision 렌즈에 미치는 수차의 영향

Need help understanding aberration theory? Learn about a few fundamental concepts to help clarify your understanding at Edmund Optics.

바로 보기

Resolution 및 Contrast의 한계: The Airy Disk

The diffraction pattern caused when light passes through an aperture is called the Airy Disk. Find out how the Airy Disk can impact your image at Edmund Optics.

바로 보기

What is the difference between an inked lens and a non-inked one?

If I want to design with your lenses and lens assemblies, how do I get the information that I need?

Now that I have chosen my lens, how do I mount it?

Power

Singlet Lens

Center Thickness (CT)

Chromatic Focal Shift

Conjugate Distance

Edge Thickness (ET)

Effective Focal Length (EFL)

Finite/Finite Conjugate

Optical Lens 설정의 배율 확인 방법

When doing basic imaging, how do you determine the magnification an optical lens will provide?

바로 보기

Optical Lens의 Focal Length를 파악하기 위한 Collimation 이해

Collimated light occurs when light rays travel parallel to each other.

바로 보기

Optical Lens 설정을 통한 이미지 형성 방법

Although a common misconception, individual optical lenses do not always form an image when the object plane is placed a focal length away from the lens.

바로 보기

Modifying Stock Optics Tip #4: Add A Coating To A Stock Lens

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

바로 보기

Radius of Curvature

Irregularity

BBAR Coating

Diopter

표면 품질 이해하기

The surface quality of optical components the scattering off of its surface, which is especially important in laser optics applications.

바로 보기

Seamed Edge

Anti-Reflection (AR) Coating

Bevel

Introduction to Basic Ray Optics

An understanding of refraction and basic ray optics is a critical foundation for understanding more complicated optical concepts and technologies.

바로 보기

Surface Flatness

Transmission

Integration of Optical Systems

Are you looking to use integration in your next system? Find out more about integrating in both imaging and non-imaging applications at Edmund Optics.

바로 보기

How do I clean my optics?

Stock and Custom Optics Manufacturing Capabilities

Edmund Optics is a global stock and custom optics manufacturing company with in house optical designers and on-site metrology and environmental testing.

바로 보기

EO의 글로벌 제조 설비

Edmund Optics® (EO) manufactures millions of precision optical components and subassemblies every year in our 5 global manufacturing facilities.

바로 보기

에드몬드 옵틱스의 계측 기술: 핵심 부품 제조 시 계측 공정

Learn about the metrology that Edmund Optics® uses to guarantee the quality of all optical components and assemblies.

바로 보기

Refraction

Clear Aperture (CA)

Surface Quality

제목  Type 제품 비교하기 재고 번호   가격(부가세 별도)  구입하기
12.0mm Optic Dia., Optic Mount Fixed #64-555 KRW 43,500
견적 요청
  • 품절/문의요망
    ×
12mm Inner Single Optic Mount Fixed #38-749 KRW 47,300
견적 요청
  • 3~5일내 배송
    ×
25mm Cage 12mm Diameter Lens Mount Fixed #85-550 KRW 59,500
견적 요청
  • 품절/문의요망
    ×
12mm Inner Pair Optic Mounts Fixed #11-405 KRW 92,900
견적 요청
  • 3~5일내 배송
    ×
 
영업 & 기술 지원
 
본사 및 지사별 연락처 확인하기
빠른
견적 요청 도구
재고 번호 입력 필요