제품이 장바구니에 추가됨
TECHSPEC® components are designed, specified, or manufactured by Edmund Optics. TECHSPEC® 부품은 에드몬드 옵틱스가 설계, 사양 지정 및 제조하는 제품입니다. 더 알아보기

6.0mm Diameter x 30.0mm FL, 980nm V-Coat, PCX Lens

633nm Laser Line Coated Plano-Convex (PCX) Lenses

×
재고 #69-523 재고정리 품절/문의요망
×
기타 코팅 옵션
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
KRW 31,800
수량 1+
KRW 31,800
가격(부가세 별도)
견적 요청
제품 정보 다운로드
Diameter (mm):
6.00 +0.0/-0.025
Effective Focal Length EFL (mm):
30.00 @ 587.6nm
Back Focal Length BFL (mm):
29.14
Coating:
Laser V-Coat (980nm)
Coating Specification:
Rabs <0.25% @ 980nm
Substrate: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
Surface Quality:
40-20
Power (P-V) @ 632.8nm:
1.5λ
Irregularity (P-V) @ 632.8nm:
λ/4
Focal Length Tolerance (%):
±1
Centering (arcmin):
<1
Center Thickness CT (mm):
1.30 ±0.05
Edge Thickness ET (mm):
1.01
Radius R1 (mm):
15.50
Clear Aperture CA (mm):
5.4
f/#:
5.00
Numerical Aperture NA:
0.10
Design Wavelength DWL (nm):
980
Type:
Plano-Convex Lens
Bevel:
Protective bevel as needed
Damage Threshold, By Design: Damage threshold for optical components varies by substrate material and coating. Click here to learn more about this specification.
5 J/cm2 @ 980nm, 10ns

Regulatory Compliance

RoHS:
Reach 224:
Certificate of Conformance:

제품군의 상세 설명

저희 standard TECHSPEC® Plano-Convex 렌즈는 다양한 laser line V-Coat AR 코팅 옵션이 가능합니다. 특정 레이저의 파장에서 최대 throughput을 갖도록 디자인된 이러한 렌즈는 low power HeNe, Diode와 Nd:YAG laser sources를 사용하는 용도에 적합합니다. Design wavelength에서 표면 당 0.25% 이하의 최대 반사율을 갖으며, 복합적 광학 콤포넌트를 사용하는 경우에 뛰어난 투과율을 제공합니다.

Filter

레이저 부품의 LIDT 이해와 표기

Laser induced damage threshold (LIDT) denotes the maximum laser fluence an optical component can withstand with an acceptable amount of risk.

바로 보기

광학 코팅 개론

Optical coatings are used to influence the transmission, reflection, or polarization properties of an optical component.

바로 보기

Gaussian Beams Calculator

Polarization Directed Flat Lenses Product Review

Polarization Directed Flat Lenses, which are formed with polymerized liquid crystal thin-film, create a focal length that is dependent on polarization state.

바로 보기

What is the best lens for focusing or collimating the output from a can-type laser diode?

Free-Space Optical Communication

Free-space optical (FSO) communications wirelessly transmit data through the air using lasers. FSO promises to revolutionize broadband internet access.

바로 보기

레이저 광학의 일반 소재

Understanding the most commonly used laser optics materials will allow for easy navigation of EO’s wide selection of laser optics components.

바로 보기

LIDT 상에서 빔 직경의 중요성

The diameter of a laser highly affects an optic’s laser induced damage (LIDT) as beam diameter directly impacts the probability of laser damage.

바로 보기

What are the advantages of increasing lens diameter in high-power optical systems?

Increasing the diameter of optical components reduces power or energy density in a system, reducing the likelihood of laser-induced damage in high-power...

바로 보기

Center Thickness (CT)

Dielectric Coating(유전체 코팅)

Ion-Beam Sputtering (IBS)

Singlet Lens

A Guide to (Not Over) Specifying Losses in Laser Optics

Overspecifying optical losses in laser systems will not further improve your performance or reliability, but it could cost you additional money and/or time.

바로 보기

Modifying Stock Optics Tip #4: Add A Coating To A Stock Lens

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

바로 보기

Free-Space Optical Communication – TRENDING IN OPTICS: EPISODE 6

Free-space optical (FSO) communications transmit information wirelessly through the air using lasers with improved bandwidth. Learn more!

바로 보기

Irregularity

Radius of Curvature

Is it possible to directly measure absorption or scatter?

Diopter

Development of a Robust Laser Damage Threshold Testbed

Development of US national laser damage standard: 2020 status

LIDT 스펙의 불확실성

Laser induced damage threshold (LIDT) of optics is a statistical value influenced by defect density, the testing method, and fluctuations in the laser.

바로 보기

표면 품질 이해하기

The surface quality of optical components the scattering off of its surface, which is especially important in laser optics applications.

바로 보기

Anti-Reflection (AR) Coating

Introduction to Basic Ray Optics

An understanding of refraction and basic ray optics is a critical foundation for understanding more complicated optical concepts and technologies.

바로 보기

Different Types of LIDT Specifications

Not all optical components are tested for laser-induced damage threshold (LIDT) and testing methods differ, resulting in different types of LIDT specifications.

바로 보기

Key Parameters of a Laser System

Learn the key parameters that must be considered to ensure you laser application is successful. Common terminology will be established for these parameters.

바로 보기

Laser Damage Threshold 테스트

Do you need to integrate optical components into a laser system? Make sure you consider laser damage threshold before you do! Find out more at Edmund Optics.

바로 보기

레이저 광학 계측 기술

Metrology is critical for ensuring that optical components consistently meet their desired specifications, especially in laser applications.

바로 보기

Laser Polarization: The Importance of Polarization in Laser Applications

Understanding the polarization of laser light is critical for many applications, as polarization impacts reflectance, focusing the beam, and other key behaviors.

바로 보기

Laser Optics Lab Trailer

The Laser Optics Lab video series discusses laser optics concepts including specifications, coating technologies, product types, and more

바로 보기

Introduction to Laser Optics Lab

The Laser Optics Lab video series discusses laser optics concepts including specifications, coating technologies, product types, and more

바로 보기

Laser Optics Lab:Back Reflections

Back reflections are created when some or part of your beam are reflected back to the source.

바로 보기

Laser Optics Lab: Coatings

Optical coatings are composed of thin-film layers used to enhance transmission or reflection properties within an optical system.

바로 보기

Laser Optics Lab:Specifications for Selecting a Laser

When determining which laser to use for your application, consider the following specifications: wavelength, coherence length, beam divergence, and Rayleigh range.

바로 보기

LIGHT TALK - EPISODE 3: Laser Damage Testing with Matthew Dabney

Join our discussion around laser damage testing in the third episode of our LIGHT TALKS series.

바로 보기

LIGHT TALK - EPISODE 4: Lasers & Optics with Kasia Sieluzycka and Nick Smith

Learn about trends in laser applications including increasing powers and decreasing pulse durations in this conversation with Kasia Sieluzycka and Nick Smith.

바로 보기

LIGHT TALK - EPISODE 8: Laser Magic! with Angi Compatangelo

From tattoo removal to diagnosing cancer, lasers can transform our lives in countless ways. Join our conversation about laser in skin care and diagnostics.

바로 보기

Resolving damage ambiguity and laser-induced damage threshold (LIDT) complications

The art and science of designing optics for laser-induced damage threshold

What makes laser optics different from normal optics?

Transmission

Building a Mach-Zehnder Interferometer

Learn how to assemble, align, and use a Mach-Zehnder Interferometer completely out of off-the-shelf products from Edmund Optics in this detailed guide.

바로 보기

Clear Aperture (CA)

Laser

Laser Damage Threshold

Refraction

EO의 글로벌 제조 설비

Edmund Optics® (EO) manufactures millions of precision optical components and subassemblies every year in our 5 global manufacturing facilities.

바로 보기

에드몬드 옵틱스의 계측 기술: 핵심 부품 제조 시 계측 공정

Learn about the metrology that Edmund Optics® uses to guarantee the quality of all optical components and assemblies.

바로 보기

Surface Quality

제목  Type 제품 비교하기 재고 번호   가격(부가세 별도)  구입하기
6.0mm Optic Dia., Optic Mount Fixed #64-552 KRW 43,500
견적 요청
  • 3~5일내 배송
    ×
 
영업 & 기술 지원
 
본사 및 지사별 연락처 확인하기
빠른
견적 요청 도구
재고 번호 입력 필요